Si vous avez déjà lu quelques articles sur le data warehousing, vous en savez un peu plus sur les faits et dimensions, et comment ils forment un modèle dimensionnel. Mais vous vous interrogez peut-être sur la manière de créer un data warehouse à partir de faits et de dimensions.
Il me semble que c’est Ralph Kimball (ou un ou une de ses collègues) qui a inventé l’expression « architecture de bus » pour le data warehouse d’entreprise. Microsoft emploie le terme de modèle dimensionnel unifié (UDM, Unified Dimensional Model) pour un concept similaire, mais celui-ci va au delà du schéma en étoile.
L’architecture de bus du data warehouse
Une architecture de bus utilise une planification descendante et une grille de dimensions et fonctions métier, afin de fournir un ensemble de data marts étroitement intégrés. Pour avoir une meilleure idée du fonctionnement de l’architecture de bus, imaginez un bus électrique, autrement dit une structure de branchement universel servant de source d’alimentation pour tous les éléments raccordés, par exemple un gros câble électrique.
L’architecture de bus de data warehouse est constituée d’un ensemble de data marts étroitement intégrés, dont la « source d’alimentation » est un ensemble de dimensions et tables de faits mises en conformité. Une table de dimension est la table de recherche (lookup) d’un modèle dimensionnel. Elle contient des données textuelles qui décodent un identifiant dans les tables de faits associées. Une dimension mise en conformité est définie et implémentée une seule fois, et elle utilisée dans les différents schémas en étoile qui forment le data mart d’entreprise.
Les dimensions définissent le qui, quoi, où, quand, pourquoi et comment de la situation, et elles sont organisées pour leur exploitation par les utilisateurs métier. La figure 1 est un exemple d’une architecture de bus partielle. Elle contient deux tables de faits (RETAIL SALES et SHIP FORM MANUFACTURING), dérivables de la chaîne de valeur de production, et les dimensions mises en conformité qui les modifient.
Téléchargez cette ressource
Créer des agents dans Microsoft 365 Copilot
Insight vous guide dans l’utilisation de la nouvelle expérience de création d’agents dans Microsoft Copilot Studio, disponible dans Copilot Chat. Découvrez les étapes clés pour concevoir, configurer et déployer ces nouveaux agents et injecter la puissance de l’IA directement dans le flux de travail.
Les articles les plus consultés
- Dark Web : où sont vos données dérobées ?
- 9 défis de transformation digitale !
- Intelligence Artificielle : DeepKube sécurise en profondeur les données des entreprises
- ActiveViam fait travailler les data scientists et les décideurs métiers ensemble
- Stockage autonome, Evolutivité & Gestion intelligente, Pure Storage offre de nouvelles perspectives aux entreprises
Les plus consultés sur iTPro.fr
- Gouvernance, cybersécurité et agents IA : trois défis clés à relever pour réussir la transition en 2026
- Top 5 des évolutions technologiques impactant la sécurité 2026
- Tendances 2026 : l’IA devra prouver sa rentabilité
- L’identité numérique : clé de voûte de la résilience et de la performance en 2026
Articles les + lus
L’essor de l’IA propulse les cyberattaques à des niveaux records
Face aux ransomwares, la résilience passe par les sauvegardes immuables
Les 6 tournants qui redéfinissent l’IA en entreprise
Infrastructures IT : 5 leviers concrets pour éviter les impasses technologiques
Une menace à 1 milliard d’euros : le gouffre de la fraude e-commerce en France
À la une de la chaîne Data
- L’essor de l’IA propulse les cyberattaques à des niveaux records
- Face aux ransomwares, la résilience passe par les sauvegardes immuables
- Les 6 tournants qui redéfinissent l’IA en entreprise
- Infrastructures IT : 5 leviers concrets pour éviter les impasses technologiques
- Une menace à 1 milliard d’euros : le gouffre de la fraude e-commerce en France
