Microsoft experiences18 ouvre aujourd'hui ses portes à Paris pour 2 jours. Conférences, sessions, démonstrations, interactions pour faire le plein d'innovations ! Derrière l'intelligence Artificielle, de véritables révolutions prennent place au sein des entreprises. Trois questions à Kenza Ibnattya, Chef de Produit - Solutions AI, Microsoft France
L’IA n’est pas synonyme de gros projets longs à mettre en œuvre
L’IA sera l’un des thèmes de l’événement, quelle approche préconisez-vous ?
Plusieurs approches s’offrent aux entreprises qui souhaitent se lancer dans l’IA : Y aller seule ou accompagnée, se lancer sur un projet à périmètre restreint ou tout de suite envisager un passage à l’échelle…. L’approche va dépendre de plusieurs facteurs dont le type de projet IA envisagé, les ressources, compétences dont l’entreprise dispose et qu’elle veut allouer à ce projet, mais aussi les impératifs « time to market ».
Chez Microsoft, nous distinguons quatre grandes typologies de projets IA :
- Les projets qui vont utiliser des solutions « prêtes à l’emploi »
qui grâce à des partenaires (éditeurs de logiciels/solutions), peuvent être mis en œuvre en quelques jours, en mobilisant peu ou pas de ressources en internes
- Les projets qui vont s’appuyer sur des API sur étagères
pour enrichir des applications avec de l’IA (comme les APIs cognitives Microsoft déjà pré-entrainées). Une telle intégration par un développeur en interne ou via un partenaire de services d’intégration prendra quelques semaines
- Les projets plus complexes, qui nécessitent un modèle d’IA plus personnalisé
avec notamment la mise en œuvre d’analyses de données et l’entrainement de modèles de Machine Learning. Ces projets nécessitent des profils plus spécialisés (data scientists, experts métiers pour guider les profils techniques dans la pertinence des modèles …). Là aussi, Microsoft (via du co-développement par exemple) et son écosystème de partenaires accompagnent les entreprises dans ces projets pouvant prendre plusieurs mois.
- Les projets qui nécessitent un niveau d’expertise élevé en raison de la complexité des systèmes d’IA à développer, pour faire face à des problématiques métiers difficiles à adresser
Ces projets demandent l’engagement de profils experts tels que les data scientists, des ingénieurs, des docteurs (PhD). L’ingénierie Microsoft, le centre MS Research et l’Inria (partenaire) peuvent être impliqués pour co-développer une solution avec l’entreprise. On se positionne plus sur une échelle de mois…voire années pour la mise en œuvre de tels projets.

En conclusion, l’IA n’est pas synonyme de gros projets longs à mettre en œuvre, il existe différents types de projets qui s’adaptent aux besoins et ressources de l’entreprise. L’important est de se lancer, même si on se lance petit !
Téléchargez cette ressource
Guide de Threat Intelligence contextuelle
Ce guide facilitera l’adoption d’une Threat Intelligence - renseignement sur les cybermenaces, cyberintelligence - adaptée au "contexte", il fournit des indicateurs de performance clés (KPI) pour progresser d' une posture défensive vers une approche centrée sur l’anticipation stratégique
Les articles les plus consultés
- Le rôle de la 5G dans la croissance et relance économique
- Les 3 fondamentaux pour réussir son projet d’automatisation intelligente
- Les services cognitifs : un élément essentiel pour la gestion intelligente des contenus d’entreprise
- Cinq conseils de sécurité IoT pour le travail hybride
- L’Indice d’Agilité Digitale : un critère pour défier le choc sanitaire
Les plus consultés sur iTPro.fr
- L’essor de l’IA propulse les cyberattaques à des niveaux records
- L’IA sous contrôle : un impératif pour la souveraineté des entreprises
- CESIN : un baromètre qui mesure le risque cyber réel
- Face aux ransomwares, la résilience passe par les sauvegardes immuables
Articles les + lus
Les entreprises n’ont plus le luxe d’expérimenter l’IA
Gouvernance, cybersécurité et agents IA : trois défis clés à relever pour réussir la transition en 2026
IoT et cybersécurité : les bases que chaque décideur doit maîtriser
Projets d’IA : la maîtrise prime sur la vitesse
Menaces de sécurité des appareils IT/IoT
À la une de la chaîne IoT
- Les entreprises n’ont plus le luxe d’expérimenter l’IA
- Gouvernance, cybersécurité et agents IA : trois défis clés à relever pour réussir la transition en 2026
- IoT et cybersécurité : les bases que chaque décideur doit maîtriser
- Projets d’IA : la maîtrise prime sur la vitesse
- Menaces de sécurité des appareils IT/IoT
