> Enjeux IT > Le Data Analyst analyse-t-il réellement les données ?

Le Data Analyst analyse-t-il réellement les données ?

Enjeux IT - Par Sabine Terrey - Publié le 12 juillet 2018
email

Traiter les extractions de bases de données, les analyser et se charger de leur interprétation, telle est la mission du Data Analyst. Cependant, face au volume d’informations à traiter, ce spécialiste de la donnée semble consacrer beaucoup trop de temps à collecter et générer des données au lieu de les analyser. Des centaines de milliers d’euros par an en heures de travail sont ainsi perdues …

Le Data Analyst analyse-t-il réellement les données ?

50% du temps mal utilisé

Le constat est là, le Data Analyst passe la moitié de son temps à collecter et générer les données, alors que pour les métiers, l’analyse des données, au cœur de la chaîne de valeur client, est stratégique pour prendre des décisions.

 

Et pourtant de nombreuses questions reviennent sans cesse

  • quelles sont les données disponibles dans l’entreprise ?
  • d’où proviennent-elles ?
  • comment y accéder ?
  • comment obtenir des informations fiables ?

 

Une mauvaise communication interne 

Le Data Analyst perdrait 14h par semaine à créer des actifs qui existent déjà car il ne peut tout simplement pas trouver, protéger ou préparer des données nécessaires.

10 h de plus à recréer des données existantes, c’est le résultat d’une mauvaise communication interne.

 

Téléchargez gratuitement cette ressource

Le Guide Server & Data center

Le Guide Server & Data center

Le Nouveau Guide Atlassian Server & Data center liste les meilleures pratiques et solutions pour libérer le potentiel de toutes les équipes. Découvrez, pas à pas, comment fluidifier l’organisation, accentuer la communication et la collaboration. Plus de 100 000 entreprises dans le monde, comme Coca Cola, Visa ou BMW utilisent des produits de gestion des services, de communication en temps réel, de partage et de création de contenu et de suivi de projets d'Atlassian pour gagner en efficacité, notamment Jira Software, Confluence, Crowd, Trello, Bitbucket, Jira ServiceDesk et Bamboo. Découvrez les meilleures pratiques.

27 % du temps seulement pour l’analyse des données

Trouver des processus d’exploitation plus efficaces est l’objectif N°1, avec une attention particulière portée à la recherche, la conservation et la catégorisation des données. En effet, le Data Analyst répartit actuellement son temps de travail de cette manière, à savoir

  • La recherche des données voulues (37 % du temps de travail)
  • La préparation des données (36 %)
  • L’analyse (27 %)

Les données doivent donc être identifiées, triées et analysées avant tout !

 

L’avantage compétitif des données !
Les conséquences sur le chiffre d’affaires des entreprises ne se font pas attendre. L’inefficacité dans l’agrégation des données coûterait

  • près de 1,7 million de dollars par an aux entreprises américaines (plus de 100 employés)
  • 1,1 million d’euros par an aux entreprises européennes

 

Alors que faire ? Dans un contexte de plus en plus compétitif, voici 3 pistes qui permettront aux entreprises d’acquérir rapidement de nouvelles opportunités :

  • réduire le temps de préparation des données
  • interpréter plus efficacement les données
  • réorienter la stratégie commerciale pour améliorer les résultats financiers

 

Source Alteryx IDC

Enjeux IT - Par Sabine Terrey - Publié le 12 juillet 2018